Applied Statistical Modelling for Ecologists
出版済み 3-5週間でお届けいたします。
A Practical Guide to Bayesian and Likelihood Inference Using R, JAGS, NIMBLE, Stan and TMB Author: Kery, Marc (Senior Scientist, Swiss Ornithological Institute, Basel, Switzerland) / Kellner, Kenneth F. (Assistant Research Professor, Michigan State University, MI, United States) Publisher: Elsevier ISBN: 9780443137150 Cover: PAPERBACK Date: 2024年07月 DESCRIPTION Applied Statistical Modelling for Ecologists: A Practical Guide to Bayesian and Likelihood Inference Using R, JAGS/Nimble, Stan and TMB provides an important guide and comparison of powerful new software packages that are now widely used in research publications, including JAGS, Stan, Nimble, and TMB. It provides a gentle introduction to the most exciting specialist software that is often used to conduct cutting-edge research, along with Bayesian statistics and frequentist statistics with its maximum likelihood estimation method. In addition, this book is simple and accessible, allowing researchers to carry out and understand statistical modeling. Through examples, the book covers the underlying statistical models widely used by scientists across many disciplines. Thus, this book will be useful for anyone who needs to quickly become proficient in statistical modeling, and in the model-fitting engines covered. TABLE OF CONTENTS 1. Introduction 2. Introduction to statistical inference 3. Linear regression models and their extensions to generalized linear, hierarchical and integrated models 4. Introduction to general-purpose model-fitting engines and the model of the mean 5. Simple linear regression with Normal errors 6. Comparison of two groups 7. Comparisons among multiple groups 8. Comparisons in two classifications or with two categorical covariates 9. General linear model with continuous and categorical explanatory variables 10. Linear mixed-effects model 11. Introduction to the Generalized linear model (GLM): Comparing two groups in a Poisson regression 12. Overdispersion, zero-inflation and offsets in a GLM 13. Poisson regression with both continuous and categorical explanatory variables 14. Poisson mixed-effects model or Poisson GLMM 15. Comparing two groups in a Binomial regression 16. Binomial GLM with both continuous and categorical explanatory variables 17. Binomial mixed-effects model or Binomial GLMM 18. Model building, model checking and model selection 19. General hierarchical models: Site-occupancy species distribution model (SDM) 20. Integrated models 21. Conclusion
|