Numerical Methods for Atmospheric and Oceanic Sciences
◆JpGU2025 セール開催中!:2025年6月30日(月)ご注文分まで
※上記表示の販売価格は割引適用後の価格です 出版済み 3-5週間でお届けいたします。 大気海洋科学の数値法 Author: Chandrasekar, A. Publisher: Cambridge University Press ISBN: 9781009100564 Cover: HARDCOVER Date: 2022年11月 こちらの商品は学校・法人様向け(機関契約)のオンラインブック版がございます。 オンラインブックの価格、納期につきましては弊社営業員または当ECサイトよりお問い合わせください。 ![]() DESCRIPTION この書籍は、流体システム全般ならびに大気圏および水圏に適用可能な様々な数値計算法の詳細を包括的に提供します。このテキストは一般的な計算流体力学技術とアルゴリズムを扱い、そして応用数学、機械工学、更には航空宇宙工学の学生にも有用です Numerical Methods for Atmospheric and Oceanic Sciences caters to the needs of students of atmospheric and oceanic sciences in senior undergraduate and graduate courses as well as students of applied mathematics, mechanical and aerospace engineering. The book covers fundamental theoretical aspects of the various numerical methods that will help both students and teachers in gaining a better understanding of the effectiveness and rigour of these methods. Extensive applications of the finite difference methods used in the processes involving advection, barotropic, shallow water, baroclinic, oscillation and decay are covered in detail. Special emphasis is given to advanced numerical methods such as Semi-Lagrangian, Spectral, Finite Element and Finite Volume methods. Each chapter includes various exercises including Python codes that will enable students to develop the codes and compare the numerical solutions obtained through different numerical methods. *Simplification of difficult concepts like the Eulerian method of solution used in solving nonlinear partial differential equations *Background discussion to support the theoretical details of each numerical scheme *Rich pool of pedagogy including programming examples using Python TABLE OF CONTENTS 1. Partial Differential Equations 2. Equations of fluid motion 3. Finite Difference Method 4. Consistency and Stability Analysis 5. Oscillation Decay Equations 6. Linear Advection Equation 7. Numerical Solution of Elliptic Partial Differential Equation 8. Shallow Water Equations 9. Numerical Methods for Solving Shallow Water Equations 10. Numerical Methods for Solving Barotropic Equations 11. Numerical Methods for Solving Baroclinic Equations 12. Boundary Conditions 13. Lagrangian and Semi-Lagrangian Schemes 14. Spectral Methods 15. Finite Volume and Finite Element Methods 16. Ocean Models A Tridiagonal Matrix Algorithm Bibliography
![]()
|